

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Intuitionistic (α , β)- Fuzzy H_v-Subgroups

Arvind Kumar Sinha*1, Manoj Kumar Dewangan²

*1,2 Department of Mathematics, NIT Raipur, Chhattisgarh, India

manoj rpr76@yahoo.co.in

Abstract

Atanassov introduced the notion of intuitionistic fuzzy sets as a generalization of the notion of fuzzy sets. In this paper we introduce the concept of an intuitionistic (α, β) -fuzzy H_{ν} -subgroups of an H_{ν} -groups by using the notion of "belongingness (\in) " and "quasi-coincidence (q)" of fuzzy points with fuzzy sets, where $\alpha \in \{\in, q\}$, $\beta \in \{\in, q, \in \vee q, \in \wedge q\}$ and, then we investigate the basic properties of these notions.

Mathematics Subject Classification: 20N20

Keywords: H_{ν} -group, H_{ν} -subgroup, fuzzy H_{ν} -group, fuzzy H_{ν} -subgroup, intuitionistic (α, β) - fuzzy H_{ν} -subgroup.

Introduction

The concept of hyperstructure was introduced in 1934 by Marty [1]. Hyperstructures have many applications to several branches of pure and applied sciences. Vougiouklis [2] introduced the notion of H_{ν} -structures, and Davvaz [3] surveyed the theory of H_{ν} -structures. After the introduction of fuzzy sets by Zadeh [4], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [5] is one among them. For more details on intuitionistic fuzzy sets, we refer the reader to [6, 7].

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [14], played a vital role to generate some different types of fuzzy subgroups. Bhakat and Das [8, 9] gave the concepts of (α, β) -fuzzy subgroups by using the notion of "belongingness (\in)" and "quasi-coincidence (q)" between a fuzzy point and a fuzzy subgroup, where α , β are any two of $\{\in$, q, \in q, \in q, with $\alpha \neq \in$ q, and introduced the concept of an $(\in$, \in q)-fuzzy subgroup. In [10] Yuan, Li et al. redefined (α, β) -intuitionistic fuzzy subgroups. M. Asghari-Larimi [15] gave intuitionistic (α, β) -fuzzy H_{ν} -submodules. This paper continues this line of research for fuzzy H_{ν} -subgroups of H_{ν} -groups.

The paper is organized as follows: in section 2 some fundamental definitions on H_{ν} -structures and fuzzy sets are explored, in section 3 we define intuitionistic (α, β) -fuzzy H_{ν} -subgroups and establish some useful theorems.

Basic Definitions

We first give some basic definitions for proving the further results.

Definition 2.1 [11] Let X be a non-empty set. A mapping $\mu: X \to [0,1]$ is called a fuzzy set in X.

Definition 2.2 [11] An intuitionistic fuzzy set A in a non-empty set X is an object having the form $A = \{(x, \mu_A(x), \lambda_A(x)) : x \in X\}$, where the functions $\mu_A : X \to [0, 1]$ and $\lambda_A : X \to [0, 1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A respectively

and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for all $x \in X$. We shall use the symbol $A = \{\mu_A, \lambda_A\}$ for the intuitionistic fuzzy set $A = \{(x, \mu_A(x), \lambda_A(x)) : x \in X\}$.

Definition 2.3 [12] Let H be a non-empty set and $*: H \times H \to \mathcal{O}^*(H)$ be a hyperoperation, where $\mathcal{O}^*(H)$ is the set of all the non-empty subsets of H. Where $A*B = \bigcup_{a \in A} a*b, \ \forall A, B \subseteq H$.

The * is called weak commutative if $x * y \cap y * x \neq \emptyset$, $\forall x, y \in H$.

The * is called weak associative if $(x * y) * z \cap x * (y * z) \neq \emptyset$, $\forall x, y, z \in H$.

(H,*) is called an H_v -group if

- (i) * is weak associative.
- (ii) a * H = H * a = H, $\forall a \in H$ (Reproduction axiom).

Definition 2.4 [13] Let H be a hypergroup (or H_{ν} -group) and let μ be a fuzzy subset of H. Then μ is said to be a fuzzy subhypergroup (or fuzzy H_{ν} -subgroup) of H if the following axioms hold:

- $(i)\min\{\mu(x),\,\mu(y)\} \le \inf_{\alpha \in x^*y} \{\mu(\alpha)\}, \quad \forall x,\, y \in H.$
- (ii) For all $x, a \in H$ there exists $y \in H$ such that $x \in a * y$ and $\min\{\mu(a), \mu(x)\} \le \{\mu(y)\}$.

Definition 2.5 [5] Let $A = \{\mu_A, \lambda_A\}$ and $B = \{\mu_B, \lambda_B\}$ be intuitionistic fuzzy sets in X. Then (1) $A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x)$ and $\lambda_A(x) \leq \lambda_B(x) \ \forall x \in X$,

- (2) $A^c = \{(x, \lambda_A(x), \mu_A(x)) : x \in X\},\$
- (3) $A \cap B = \{(x, \min\{\mu_A(x), \mu_B(x)\}, \max\{\lambda_A(x), \lambda_B(x)\}) : x \in X\},$
- $(4) A \cup B = \{(x, \max\{\mu_A(x), \mu_B(x)\}, \min\{\lambda_A(x), \lambda_B(x)\}) : x \in X\}$

Definition 2.6 [8] Let μ be a fuzzy subset of R. If there exist a $t \in (0,1]$ and an $x \in R$ such that

$$\mu(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

Then μ is called a fuzzy point with support x and value t and is denoted by x_t .

Definition 2.7 [8] Let μ be a fuzzy subset of R and x_t be a fuzzy point.

- (1) If $\mu(x) \ge t$, then we say x_t belongs to μ , and write $x_t \in \mu$.
- (2) If $\mu(x)+t>1$, then we say x_t is quasi-coincident with μ , and write $x_tq\mu$.
- (3) $x_t \in \forall q \mu \Leftrightarrow x_t \in \mu \text{ or } x_t q \mu$.
- (4) $x_t \in \land q\mu \Leftrightarrow x_t \in \mu \text{ and } x_t q\mu$.

In what follows, unless otherwise specified, α and β will denote any one of \in , q, $\in \vee q$ or $\in \wedge q$ with $\alpha \neq \in \wedge q$, which was introduced by Bhakat and Das [9].

Intuitionistic (α, β) - fuzzy H_{ν} -subgroups

In this section we give the definition of intuitionistic (α, β) -fuzzy H_{ν} -subgroup and prove some related results.

Definition 3.1 Let H be a hypergroup (or H_{ν} -group). An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ of H is called intuitionistic fuzzy subhypergroup (or intuitionistic fuzzy H_{ν} -subgroup) of H if the following axioms hold:

- (i) $\min\{\mu(x), \mu(y)\} \le \inf_{\alpha \in x^* y} \{\mu(\alpha)\}, \quad \forall x, y \in H.$
- (ii) For all $x, a \in H$ there exists $y \in H$ such that $x \in a * y$ and $\min\{\mu(a), \mu(x)\} \le \{\mu(y)\}$.
- (iii) $\sup_{\alpha \in x^* y} {\{\lambda_A(\alpha)\}} \le \max{\{\lambda_A(x), \lambda_A(y)\}}, \quad \forall x, y \in H.$
- (iv) For all $x, a \in H$ there exists $y \in H$ such that $x \in a * y$ and $\{\lambda_A(y)\} \le \max\{\lambda_A(a), \lambda_A(x)\}$.

Definition 3.2 An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ in G is called an intuitionistic (α, β) -fuzzy H_v -subgroup of G if for all $t, r \in (0, 1]$,

- (1) $\forall x, y \in G$, $x_r, y_r \alpha \mu_A \Rightarrow z_{t \land r} \beta \mu_A$ for all $z \in x \cdot y$,
- (2) $\forall x, a \in G$, $x_t, a_r \alpha \mu_A \Rightarrow y_{t \wedge r} \beta \mu_A$ for some $y \in G$ with $x \in a \cdot y$,
- (3) $\forall x, y \in G$, $x_t, y_t \overline{\alpha} \lambda_A \Rightarrow z_{t \wedge t} \overline{\beta} \lambda_A$ for all $z \in x \cdot y$,
- (4) $\forall x, a \in G$, $x_t, a_r \overline{\alpha} \lambda_A \Rightarrow y_{t, r} \overline{\beta} \lambda_A$ for some $y \in G$ with $x \in a \cdot y$,

Lemma 3.3 Let $A = \{\mu_A, \lambda_A\}$ be an intuitionistic fuzzy set in G. Then for all $x \in G$ and $r \in (0, 1]$, we have

- (1) $x_t q \mu_A \Leftrightarrow x_t \in \mu_A^c$.
- (2) $x_t \in \vee q\mu_A \Leftrightarrow x_t \in \wedge q \mu_A^c$.

Proof. (1) Let $x \in G$ and $r \in (0, 1]$. Then, we have

$$x_{t}q\mu_{A} \Leftrightarrow \mu_{A}(x)+t>1$$

$$\Leftrightarrow 1-\mu_{A}(x)< t$$

$$\Leftrightarrow \mu_{A}^{c}(x)< t$$

$$\Leftrightarrow x_{t} \in \mu_{A}^{c}.$$

(2) Let $x \in G$ and $r \in (0, 1]$. Then, we have

$$x_{t} \in \forall q \mu_{A} \iff x_{t} \in \mu_{A}$$
 or $x_{t}q \mu_{A} \iff \mu_{A}(x) \geq t$ or $\mu_{A}(x) + t > 1 \iff x_{t}\overline{q} \mu_{A}^{c}$ or $x_{t} \in \mu_{A}^{c}$ or $x_{t} \in \mu_{A}^{c}$

Theorem 3.4 If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic (\in, \in) -fuzzy H_{ν} -subgroup of G, then $A = \{\mu_A, \lambda_A\}$ is an intuitionistic fuzzy H_{ν} -subgroup of G.

Proof (1) Let $x, y \in G$ and $\mu_A(x) \wedge \mu_A(y) = t$. Then $x_t, y_t \in \mu_A$. By condition (1) of definition 3.2, we have $z_t \in \mu_A$, $\forall z \in x \cdot y$, and so $\mu_A(z) \ge t$, $\forall z \in x \cdot y$.

Consequently $\mu_{A}(x) \wedge \mu_{A}(y) = t \leq \bigwedge_{z \in x \cdot y} \mu_{A}(z)$ for all $x, y \in G$.

(2) Now let $x, a \in G$ and $\mu_A(x) \wedge \mu_A(a) = t$. Then $x_t, a_t \in \mu_A$. It follows from condition (2) of definition 3.2 that $y_t \in \mu_A$, for some $y \in G$ with $x \in a \cdot y$.

Thus $y_t \in \mu_A$, for some $y \in G$ with $x \in a \cdot y$.

So, for all $x, a \in G$, there exist $y \in G$ such that $x \in a \cdot y$ and $\mu_A(x) \wedge \mu_A(a) = t \leq \mu_A(y)$.

(3) Let $x, y \in G$ and $\lambda_A(x) \vee \lambda_A(y) = s$. If s = 1, then $\lambda_A(z) \le 1 = s$ for all $z \in x \cdot y$. It is easy to see that $\bigvee_{z \in x \cdot y} \lambda_A(z) \le \lambda_A(x) \vee \lambda_A(y)$ for all $x, y \in G$

If s < 1 there exists a $t \in (0, 1]$ such that $\lambda_A(x) \vee \lambda_A(y) = s < t$

Then $x_t, y_t \in \lambda_A$. By condition (3) of definition 3.2, we have $z_t \in \lambda_A$, $\forall z \in x \cdot y$ and so $\lambda_A(z) < t$.

Consequently $\bigvee_{z \in x, y} \lambda_A(z) \le \lambda_A(x) \lor \lambda_A(y)$ for all $x, y \in G$.

(4) Now let $x, a \in G$ and $\lambda_A(x) \vee \lambda_A(a) = s$. If s < 1, there exists a $t \in (0, 1]$ such that $\lambda_A(x) \vee \lambda_A(a) = s < t$.

Then $x_t, a_t \in \lambda_A$. By condition (4) of definition 3.2, we have $y_t \in \lambda_A$ for some $y \in G$ with $x \in a \cdot y$. Hence $\lambda_A(y) < t$ and $\lambda_A(z) < t$.

Thus $\lambda_A(y) \vee \lambda_A(z) < t$. This implies that for all $x, a \in G$, there exist $y \in G$ such that $x \in a \cdot y$ and $\lambda_A(y) \leq \lambda_A(x) \vee \lambda_A(a)$. If s = 1 the proof is obvious.

Theorem 3.5 If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic $(\in, \in \vee q)$ and $(\in, \in \wedge q)$ -fuzzy H_{ν} -subgroup of G, then $A = \{\mu_A, \lambda_A\}$ is an intuitionistic fuzzy H_{ν} -subgroup of G.

Proof The proof is similar to the proof of Theorem 3.4.

Theorem 3.6 If $\Box A = \left\{ \mu_A, \mu^c_A \right\}$ is an intuitionistic (α, β) -fuzzy H_v -subgroup of G if and only if $\Box A = \left\{ \mu_A, \mu^c_A \right\}$ is an intuitionistic (α', β') -fuzzy H_v -subgroup of G, where $\alpha \in \{\in, q\}$ and $\beta \in \{\in, q, \in \lor q, \in \land q\}$.

Proof We only prove the case of $(\alpha, \beta) = (\in, \in \lor q)$. The others are analogous. Let $\Box A = \{\mu_A, \mu^c_A\}$ be an intuitionistic $(\in, \in \lor q)$ -fuzzy H_v -subgroup of G.

Condition (1). Let $x, y \in G$ and $t, r \in (0,1]$ be such that $x_t, y_r q \mu_A$. It follows from Lemma 3.3 that $x_t, y_r \in \mu_A^c$. Since μ_A^c is an anti $(\in, \in \lor q)$ -fuzzy H_v -subgroup of G. Thus by condition (3) of definition 3.2, we have

$$z_{t \wedge r} \in \vee q \mu_A^c$$
 for all $z \in x \cdot y$.

By Lemma 3.3, this is equivalence with

 $z_{t \wedge r} \in \wedge q \mu_A$ for all $z \in x \cdot y$.

Thus condition of (1) of definition 3.2 is valid.

http://www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology [914-918]

Condition (2). Suppose that $x, a \in G$ and $t, r \in (0,1]$ be such that $x_t, a_r q \mu_A$. By Lemma 3.3, we have $x_t, a_r q \mu_A$ iff $x_t, a_r \in \mu_A^c$. By hypotheses, μ_A^c is an anti $(\in, \in \lor q)$ -fuzzy H_v -subgroup of G. Thus by condition (4) of definition 3.2, we have

 $y_{t \wedge r} \in \forall q \mu_A^c$ for some $y \in G$ with $x \in a \cdot y$.

It follows from Lemma 3.2 that

 $y_{t \wedge r} \in \land q \mu_A$ for some $y \in G$ with $x \in a \cdot y$.

Thus condition of (2) of definition 3.2 is valid.

Condition (3). Let $x, y \in G$ and $t, r \in (0, 1]$ be such that $x_t, y_r \overline{q} \mu_A^c$. It follows from Lemma 3.3 that $x_t, y_r \overline{q} \mu_A^c$ iff $x_t, y_r \in \mu_A$. Since $\Box A = \left\{ \mu_A, \mu_A^c \right\}$ is an intuitionistic $\left(\in, \in \lor q \right)$ -fuzzy H_v -subgroup of G. Thus by condition (1) of definition 3.2, we have

$$z_{t \wedge r} \in \vee q \mu$$
 for all $z \in x \cdot y$.

By Lemma 3.2, this is equivalence with

$$z_{t \wedge r} \in \wedge q \mu_A^c$$
 for all $z \in x \cdot y$.

Thus condition of (3) of definition 3.2 is valid.

Condition (4). Suppose that $x, a \in G$ and $t, r \in (0, 1]$ be such that $x_t, a_r \overline{q} \mu_A^c$. This is equivalence with $x_t, a_r \in \mu_A$. By hypotheses, μ_A is an $(\in, \in \lor q)$ -fuzzy H_v -subgroup of G. Thus by condition (2) of definition 3.2, we have

 $y_{t \wedge r} \in \forall q \mu_A \text{ for some } y \in G \text{ with } x \in a \cdot y.$

It follows from Lemma 3.3 that

 $y_{t \wedge r} \in \land q \mu_A^c$ for some $y \in G$ with $x \in a \cdot y$.

Thus condition of (4) of definition 3.2 is valid.

Theorem 3.7 If $\Diamond A = \left\{ \begin{array}{l} \lambda_A^c, \lambda_A \right\}$ is an intuitionistic (α, β) -fuzzy H_v -subgroup of G if and only if $\Diamond A = \left\{ \begin{array}{l} \lambda_A^c, \lambda_A \right\}$ is an intuitionistic (α', β') -fuzzy H_v -subgroup of G, where $\alpha \in \{\in, q\}$ and $\beta \in \{\in, q, \in \vee q, \in \wedge q\}$.

Proof The proof is similar to the proof of Theorem 3.6.

Theorem 3.8 If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic (α, β) -fuzzy H_v -subgroup of G if and only if μ_A is an (α, β) -fuzzy H_v -subgroup of G and λ_A^c is an (α', β') -fuzzy H_v -subgroup of G, where $\alpha \in \{\in, q\}$ and $\beta \in \{\in, q, \in \lor q, \in \land q\}$.

Proof We only prove the case of $(\alpha, \beta) = (\in, \in \lor q)$. The others are analogous. It is sufficient to show that, λ_A^c is an $(q, \in \land q)$ -fuzzy H_v -subgroup of G if and only if λ_A is an anti $(\in, \in \lor q)$ -fuzzy H_v -subgroup of G. This is true, because $x_t q \lambda_A \Leftrightarrow x_t \in \lambda_A^c$ and $x_t \in \land q \lambda_A \Leftrightarrow x_t \in \lor q \lambda_A^c$, $\forall x \in G$ and $t \in (0,1]$.

References

- [1] F. Marty, Sur une generalization de la notion de group, in: 8th congress Math.Skandenaves, Stockholm, 1934, pp. 45-49.
- [2] T. Vougiouklis, A new class of hyperstructures, J. Combin. Inf. System Sci., to appear.
- [3] B. Davvaz, A brief survey of the theory of H_{ν} -structures, in: Proceedings of the 8^{th} International Congress on AHA, Greece 2002, Spanids Press, 2003, pp. 39-70.
- [4] L. A. Zadeh, Fuzzy sets, Inform. And Control 8 (1965) 338-353.
- [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.

http://www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

- [6] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61, (1994) 137-142.
- [7] K. T. Atanassov, Intuitionistic fuzzy sets: Theory and Applications, Studies in fuzziness and computing, 35, Heidelberg, New York, Physica-Verl., 1999.
- [8] S. K. Bhakat, P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems, 51 (1992) 235-241.
- [9] S. K. Bhakat, P. Das, $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy Sets and Systems, 80 (1996) 359- 368.
- [10]X. H. Yuan, H. X. Li and E. S. Lee, On the definition of the intuitionistic fuzzy subgroups, Computers and Mathematics with Applications, 59 (2010) 3117-3129.
- [11]B. Davvaz, W. A. Dudek, Y. B. Jun, Intuitionistic fuzzy H_v-submodules, Inform. Sci. 176 (2006) 285-300.
- [12]T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Florida, 1994. [13] B. Davvaz, Fuzzy H_v-groups, Fuzzy Sets and Systems 101 (1999) 191-195.
- [13]B. Davvaz, Fuzzy Hv-groups, Fuzzy Sets and Systems 101 (1999) 191-195.
- [14]P. M. Pu and Y. M. Liu, Fuzzy topology: Neighourhood structure of a fuzzy point and convergence, J. Math. Anal. Appl., 76 (1980) 571-599.
- [15]M. Asghari-Larimi, Intuitionistic (α, β)-Fuzzy H_ν-Submodules, J. Math. Comput. Sci. 2 (2012), No. 1, 1-14.
- [16]